Anas Barakat
Anas Barakat
Home
Research
Talks
Teaching
CV
Contact
Light
Dark
Automatic
Publications
Type
Conference paper
Journal article
Thesis
Date
2025
2024
2023
2022
2021
2020
2019
Multi-Agent Online Control with Adversarial Disturbances
Anas Barakat
,
John Lazarsfeld
,
Georgios Piliouras
,
Antonios Varvitsiotis
Arxiv
Optimistic Online Learning in Symmetric Cone Games
Anas Barakat
,
Wayne Lin
,
John Lazarsfeld
,
Antonios Varvitsiotis
Arxiv
Learning Zero-Sum Linear Quadratic Games with Improved Sample Complexity and Last Iterate Convergence
Jiduan Wu
,
Anas Barakat
,
Ilyas Fatkhullin
,
Niao He
Arxiv
A Prospect-Theoretic Policy Gradient Algorithm for Behavioral Alignment in Reinforcement Learning
Olivier Lepel
,
Anas Barakat
Slides
Arxiv
Towards Scalable General Utility Reinforcement Learning: Occupancy Approximation, Sample Complexity and Global Optimality
Anas Barakat
,
Souradip Chakraborty
,
Peihong Yu
,
Pratap Tokekar
,
Amrit Singh Bedi
Arxiv
Independent Policy Mirror Descent for Markov Potential Games: Scaling to Large Number of Players
Pragnya Alatur
,
Anas Barakat*
,
Niao He
Slides
Proceedings
Arxiv
Policy Mirror Descent with Lookahead
Kimon Protopapas
,
Anas Barakat
Proceedings
Arxiv
Independent Learning in Constrained Markov Potential Games
Philip Jordan
,
Anas Barakat
,
Niao He
Poster
Slides
Proceedings
Arxiv
Learning Zero-Sum Linear Quadratic Games with Improved Sample Complexity
Jiduan Wu
,
Anas Barakat
,
Ilyas Fatkhullin
,
Niao He
Proceedings
Arxiv
Reinforcement Learning with General Utilities: Simpler Variance Reduction and Large State-Action Space
Anas Barakat
,
Ilyas Fatkhullin
,
Niao He
Poster
Slides
Proceedings
Arxiv
Stochastic Policy Gradient Methods: Improved Sample Complexity for Fisher-non-degenerate Policies
Ilyas Fatkhullin
,
Anas Barakat
,
Anastasia Kireeva
,
Niao He
Poster
Proceedings
Arxiv
Analysis of a Target-Based Actor-Critic Algorithm with Linear Function Approximation
Anas Barakat
,
Pascal Bianchi
,
Julien Lehmann
Poster
Proceedings
Arxiv
Contributions to non-convex stochastic optimization and reinforcement learning
Anas Barakat
Slides
Thesis
Stochastic optimization with momentum: convergence, fluctuations, and traps avoidance
Anas Barakat
,
Pascal Bianchi
,
Walid Hachem
,
Sholom Schechtman
DOI
Arxiv
Journal
Convergence and Dynamical Behavior of the ADAM Algorithm for Non-Convex Stochastic Optimization
Anas Barakat
,
Pascal Bianchi
Poster
Slides
Video
DOI
Arxiv
Journal
Convergence Rates of a Momentum Algorithm with Bounded Adaptive Step Size for Non-Convex Optimization
Anas Barakat
,
Pascal Bianchi
Poster
Slides
Proceedings
Arxiv
Cite
×