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This Talk: Multi-Agent Reinforcement Learning
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Mathematical Framework for MARL

> Stochastic Games | ]

> = <N78a (Ai)i€N7P7(ri)i€N7p57>

» Here P(s'|s,a), ri(s,a), dependence on a joint action (strategic interaction)
> joint policy m € M =[;c A(A)®

» (Action)-value functions for each agent i € N, w € I,

+o0 oo
V7(s) :=E, nytr,-(st,at) | so = 51 , QF(s,a) =E, Zytr;(st, ar)|so =s,a0=a
t=0 t=0

e-approximate Nash equilibrium (s-NE)
wf = (nh, ) €N st VieN,m € A5, Eoo [V (s)]-Eso [V ™ (s)] < &
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Independent Learning

» Learning protocol (see e.g. [ ]), a.k.a. uncoupled learning
P agents can only observe realized state and their own reward and action
(e.g. not policies of others)
» Motivation

> Scaling (‘curse of multi-agents')
» Privacy protection

» Communication cost
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Example: Dynamic load balancing [Yao and Ding, 2022]
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Figure 2: Source: geeksforgeeks.org

» Assign clients to servers in distributed computing
» minimize communication overhead for low-latency response

» scale across large data centers

» Can be modeled as a Markov Potential Game
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Markov Potential Games

» Extend potential games in static normal form games (approx NE tractable).

Definition
Vs € §,3®, : M — R (player independent) st. Vi € N, (m;,7_;) € N, 7} € A(A;)S,
VI (s) = VP (s) = Og(m, mi) — sl ms)

I i

» Includes identical interest case (r; = r,Vi ) and beyond.

> Actively investigated recently [ : :
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Contributions in a nutshell

» Policy Mirror Descent algorithm implemented independently by agents:
» Similarly to single agent setting.
» Mirror descent with a dynamically weighted Bregman divergence regularization.

» Unifies Policy Gradient Ascent and Natural Policy Gradient for MPGs in the lit.
» Nash regret bounds ( = ¢-NE) for PMD with either Euclidean or KL reg.:

» Setting: full information, i.e. access to average Q-values w.r.t. policies of others.
> From N to v N dependence w.r.t. nb of players N using KL.
» Independence from the size of the agents’ action spaces.

» Improved state dependence in our MPG setting.
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Independent PMD
For every state s € S, every agent i € N,

= (t 1
Wftjl) € argmax {(in),m’g — D¢(Wi7s,W§Z)} , (PMD)
’ i s€EA(A;) ’ n 7

> averaged Q-value Q” : S x A; — R for any agent i € N and policy 7 € I:

Q7 (s, ai) == Ea,,-~7r,,-(~\s)[Ql?r(sa aj,a_j)], Vs €S, ai € A;.

- can be estimated independently by agents using only their observed rewards.

» Bregman divergence D,, induced by a mirror map ¢ : dom — R such
that A(A;) C dom ), i.e. for any p, g € A(A;),

Dy(p,q) = ¥(p) — ¥(q) — (V¥(a),p — q) .
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Examples of PMD for MPGs

Projected Q-Ascent
With mirror map v(x) = 3[|x||?, Dy(x,y) = 3|Ix — y||*:

Wftfl) = Proja (A,-)(Wf,? +nQry). (1)

Vie N,se€ S and Proja(4,) is the projection operator on the simplex A(A)).

Natural Policy Gradient/Exponential Q-Ascent
With ¢ = neg. entropy, Dy, = KL:

D 1) — T (1) (107 (s, 1)

. : 2
, 7 @

Vi e N, (s,a;) €S x Aj, where Z/** prob. normalization and 7(®) € int(A(A)IS).
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Nash Regret Analysis: Key = Potential Function Improvement
Definition

-
1 / ) t
Nash-regret(T) = Z max max V,-ﬂ"ﬂ_'(P) — v )(P) )

Algorithm e-Nash regret

PMD (Euclidean reg.) CD(?Eﬁg%E%%gﬁid)

2 axF
PMD (KL reg.) O (fiey)

Table 1: Iteration complexity for obtaining e-Nash regret in MPGs (¢ constant dependent on
initial policy, %, distrib. mismatch coeff., ¢max max individual state potential fun.)
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Future Work

» Technical follow-up on our work:
> Stochastic setting (estimate average Q-functions)? Stochastic approximation!
» Last iterate guarantees beyond average Nash regret?

» Scaling to large spaces via function approximation?

> More broadly, several interesting questions to investigate:

» Centralized vs independent learning: Can we characterize fundamental limits
between these settings (e.g. in terms of iteration and sample complexity) for
different algorithms/game dynamics?

»> “Fully” independent learning dynamics (agents running different algorithms)?

> Better definitions for cooperative MARL? Definition of MPGs adopted in the lit.
seems quite restrictive for fully capturing the dynamical stateful setting (as an
extension of potential games). Can we go beyond?

» Other Classes of Markov Games with tractable NE computation? Equilibrium
selection? Active and exciting research areas.
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Thank you for your attention

Check out our paper for more details:

Please feel free to reach out if you have any questions or comments!
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