

Motivation	Normalized Variance Reduced PG for RL with General Utilities	Large state-a
RL with general utilities	Algorithm 1 N-VR-PG (General Utilities)	• Linear function approximation of the
 Imitation Learning Pure exploration Risk-sensitive/averse RL Active exploration for experimental design 	$ \begin{array}{l} \hline \mathbf{Input:} \ \theta_{0}, T, H, \{\eta_{t}\}_{t \geq 0}, \{\alpha_{t}\}_{t \geq 0}. \\ \mathbf{for} \ t = 1, \dots, T - 1 \ \mathbf{do} \\ & \text{Sample} \ \tau_{t} \ \text{of length} \ H \ \text{from MDP and} \ \pi_{\theta_{t}} \\ & u_{t} = \lambda(\tau_{t})(1 - w(\tau_{t} \theta_{t-1},\theta_{t})) \\ & \lambda_{t} = \eta_{t}\lambda(\tau_{t}) + (1 - \eta_{t})(\lambda_{t-1} + u_{t}) \\ & r_{t} = \nabla_{\lambda}F(\lambda_{t}) \\ & v_{t} = g(\tau_{t},\theta_{t},r_{t-1}) - w(\tau_{t} \theta_{t-1},\theta_{t})g(\tau_{t},\theta_{t-1},r_{t-2}) \\ & d_{t} = \eta_{t}g(\tau_{t},\theta_{t},r_{t-1}) + (1 - \eta_{t})(d_{t-1} + v_{t}) \\ & \theta_{t+1} = \theta_{t} + \alpha_{t}\frac{d_{t}}{\ d_{t}\ } \end{array} $	• Linear regression procedure: - K steps of SGD over the objecti $L_{\theta}(\omega) := \mathbb{E}_{s \sim \rho, a \sim \mathcal{U}(\mathcal{A})}[(\omega) = \omega_{s \sim \rho, a \sim \mathcal{U}(\mathcal{A})}]$
	end for	
Problem formulation	(1) single-loop batch free; (2) normalization implies boundedness of IS weights	Stochastic PG with Linear Occupa
 MDP M(S, A, P, F, ρ, γ) with a general utility function F, Parametrized policy π_θ, θ ∈ ℝ^d, State-action occupancy measure: λ^{π_θ}(s, a) = ∑^{+∞}_{t=0} γ^t ℙ_{ρ,π_θ}(s_t = s, a_t = a). 	Sample complexity for N-VR-PGUnder smoothness conditions on F and softmax π_{θ} , $\underline{Setting}$ GuaranteeSample complexity \overline{F} non-concave $\mathbb{E}[\nabla F(\lambda^{\pi_{\theta_{out}}})] \leq \varepsilon$ $\tilde{\mathcal{O}}(\varepsilon^{-3})$ F concave* $\mathbb{E}[F^* - F(\lambda^{\pi_{\theta_{out}}})] \leq \varepsilon$ $\tilde{\mathcal{O}}(\varepsilon^{-2})$ * with overparametrized softmax policy	Algorithm 2 Stochastic PG with Linear FullInput: $\theta_0 \in \mathbb{R}^d, T, N \ge 1, \alpha > 0, K \ge 1, \beta$ for $t = 0, \dots, T - 1$ doRun SGD for K steps of linear regressDefine $r_t = \nabla_{\lambda} F(\hat{\lambda}_t)$ where $\hat{\lambda}_t(\cdot, \cdot) =$ Sample N independent trajectories (τ_t $\theta_{t+1} = \theta_t + \frac{\alpha}{N} \sum_{i=1}^N g(\tau_t^{(i)}, \theta_t, r_{t-1})$ end forReturn: θ_T
$ heta \in \mathbb{R}^d$	Simulations	
[1, 2, 3, 4]	(left) standard RL in CartPole; (right) nonlinear obj. maximization in FrozenLake	Sample com
$\begin{aligned} & \nabla_{\theta} F(\lambda^{\pi_{\theta}}) = \nabla_{\theta} V^{\pi_{\theta}}(r) _{r = \nabla_{\lambda} F(\lambda^{\pi_{\theta}})} , \\ & V^{\pi_{\theta}}(r) = \mathbb{E}_{\rho, \pi_{\theta}} \left[\sum_{t=0}^{+\infty} \gamma^{t} r(s_{t}, a_{t}) \right] . \end{aligned}$	200 175 100 125 50 50 50 50 50 50 50 50 50 5	Assumptions: (a) regularity of the utility (c) standard assumptions on the feature m Theorem: Stochastic PG with linear regres $\tilde{\mathcal{O}}(\varepsilon^{-4})$ s to guarantee an ε -first-order stationary point tion approximation error floor.
Challenges	References	
• double-loop, large batch, params	[1] Flad Hazan Sham Kakade Karan Singh and Abby Van Soest Provably efficient maximum entropy evoloration	[3] Junyu Zhang Alec Konnel Amrit Singh Bedi Csaha Sze

- occupancy measure estimation in large state-action space

Reinforcement Learning with General Utilities: Simpler Variance Reduction and Large State-Action Space Ilyas Fatkhullin Anas Barakat Niao He

ICML 2019.

azan, Sham Kakaac, Karan Singn, and Moby van Socsi. I tovabry chicicin maximum chicopy cypioranon.

[2] Tom Zahavy, Brendan O'Donoghue, Guillaume Desjardins, and Satinder Singh. Reward is enough for convex mdps. NeurIPS 2021.

Junyu Zhang, Alec Koppel, Amrit Singh Bedi, Csaba Szepesvari, and Mengdi Wang. Variational policy gradient method for reinforcement learning with general utilities. *NeurIPS* 2020. [4] Junyu Zhang, Chengzhuo Ni, Zheng Yu, Csaba Szepesvari, and Mengdi Wang. On the convergence and sample efficiency of variance-reduced policy gradient method. NeurIPS 2021.

ction space

e occupancy measure

 $\omega_{\theta} \in \mathbb{R}^m, m \ll |\mathcal{S}| \times |\mathcal{A}|.$

ive:

 $(\lambda^{\pi_{\theta}}(s,a) - \langle \phi(s,a), \omega \rangle)^2],$

or $\lambda^{\pi_{\theta}}(s, a)$ sampled at each step $k \leq K$.

ancy Measure Approximation

anction Approximation

 $\beta > 0, H$.

sion to obtain $\hat{\omega}_{\theta_t}$. $\langle \phi(\cdot, \cdot), \hat{\omega}_{ heta_t}
angle$. $(\tau_t^{(i)})_{1 \le i \le N}$ of length H with π_{θ_t}

plexity

function F, (b) smoothness of π_{θ} and $ap \phi$.

ssion subroutine requires

samples

int of the objective function up to a func-