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Motivation
RL with general utilities

• Imitation Learning

• Pure exploration

• Risk-sensitive/averse RL

• Active exploration for experi-
mental design

• ...

Problem formulation
• MDP M(S,A,P, F, ρ, γ) with a

general utility function F ,

• Parametrized policy πθ, θ ∈ Rd ,

• State-action occupancy measure:

λπθ (s, a) =

+∞∑
t=0

γtPρ,πθ
(st = s, at = a) .

max
θ∈Rd

F (λπθ )

[1, 2, 3, 4]

Policy gradient theorem [4]

∇θF (λπθ ) = ∇θV
πθ (r)|r=∇λF (λπθ ) ,

V πθ (r) = Eρ,πθ

[
+∞∑
t=0

γtr(st, at)

]
.

Challenges

• double-loop, large batch, params
• occupancy measure estimation in

large state-action space

Normalized Variance Reduced PG for RL with General Utilities
Algorithm 1 N-VR-PG (General Utilities)

Input: θ0, T , H , {ηt}t≥0, {αt}t≥0 .
for t = 1, . . . , T − 1 do

Sample τt of length H from MDP and πθt

ut = λ(τt)(1− w(τt|θt−1, θt))
λt = ηtλ(τt) + (1− ηt)(λt−1 + ut)
rt = ∇λF (λt)
vt = g(τt, θt, rt−1)− w(τt|θt−1, θt)g(τt, θt−1, rt−2)
dt = ηtg(τt, θt, rt−1) + (1− ηt)(dt−1 + vt)
θt+1 = θt + αt

dt

∥dt∥
end for

(1) single-loop batch free; (2) normalization implies boundedness of IS weights

Sample complexity for N-VR-PG

Under smoothness conditions on F and softmax πθ,

Setting Guarantee Sample complexity
F non-concave E[∥∇F (λπθout )∥] ≤ ε Õ(ε−3)

F concave∗ E[F ∗ − F (λπθout )] ≤ ε Õ(ε−2)

∗ with overparametrized softmax policy

Simulations
(left) standard RL in CartPole; (right) nonlinear obj. maximization in FrozenLake
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Large state-action space

• Linear function approximation of the occupancy measure

λπθ (s, a) ≈ ⟨ϕ(s, a), ωθ⟩ , ωθ ∈ Rm ,m << |S| × |A| .

• Linear regression procedure:

– K steps of SGD over the objective:

Lθ(ω) := Es∼ρ,a∼U(A)[(λ
πθ (s, a)− ⟨ϕ(s, a), ω⟩)2] ,

– using Monte-Carlo estimates for λπθ (s, a) sampled at each step k ≤ K .

Stochastic PG with Linear Occupancy Measure Approximation

Algorithm 2 Stochastic PG with Linear Function Approximation

Input: θ0 ∈ Rd, T,N ≥ 1, α > 0,K ≥ 1, β > 0, H .
for t = 0, . . . , T − 1 do

Run SGD for K steps of linear regression to obtain ω̂θt .
Define rt = ∇λF (λ̂t) where λ̂t(·, ·) = ⟨ϕ(·, ·), ω̂θt⟩ .
Sample N independent trajectories (τ (i)t )1≤i≤N of length H with πθt

θt+1 = θt +
α
N

∑N
i=1 g(τ

(i)
t , θt, rt−1)

end for
Return: θT

Sample complexity

Assumptions: (a) regularity of the utility function F , (b) smoothness of πθ and
(c) standard assumptions on the feature map ϕ .

Theorem: Stochastic PG with linear regression subroutine requires

Õ(ε−4) samples

to guarantee an ε-first-order stationary point of the objective function up to a func-
tion approximation error floor.
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