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RL with General Utilities - Motivation

I Constrained RL, risk-sensitive/averse RL: Conditional
Value-at-Risk.

I Imitation Learning: f -divergence minimization between
state-action occupancy measures of an agent and an expert.

I Pure exploration: State visitation entropy maximization.

I Active Exploration: Experiment design in Markov Chains.

I ...
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Problem Formulation

I MDP M(S,A,P,F , ρ, γ) with a general utility function F ,

I Parametrized policy πθ, θ ∈ Rd ,

I State-action occupancy measure λπθ :

λπθ(s, a)
def
=

+∞∑
t=0

γtPρ,πθ(st = s, at = a) .

Problem

max
θ∈Rd

F (λπθ)
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Recent Related Work

I Convex RL and unified problem formulation
[Hazan et al., 2019, Zahavy et al., 2021, Zhang et al., 2020,
Zhang et al., 2021]

I Direct policy search method [Zhang et al., 2021], Bellman
equations being invalidated due to nonlinearity.

Solving RL with General Utilities using Standard RL

∇θF (λπθ) = ∇θV πθ(r)|r=∇λF (λπθ ) ,

where V πθ(r)
def
= Eρ,πθ

[∑+∞
t=0 γ

tr(st , at)
]
.

I double-loop variance-reduced PG method with gradient
truncation to control IS weights in the tabular setting.
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1. Simpler Variance Reduction
Limitations in Prior Work and our Contributions

1. I Prior work: double-loop PG algorithm with large batches for
variance reduced stochastic PG and parameter knowledge.

I Contribution: single-loop normalized PG using a single
trajectory per iteration and reducing parameter knowledge
requirements, inspired by [Cutkosky and Orabona, 2019].

2. I Prior work: Most prior work makes the unrealistic assumption
of bounded IS weights variance (in standard RL).

I Contribution: Normalized gradient update guarantees
bounded IS weights for softmax (and Gaussian) policies.
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1. Simpler Variance Reduction

Algorithm 1 N-VR-PG(General Utilities)

Input: θ0, T , H, {ηt}t≥0, {αt}t≥0 .
Sample τ0 of length H from M and πθ0

λ0 = λ(τ0, θ0); r0 = ∇λF (λ0); r−1 = r0
d0 = g(τ0, θ0, r0)
θ1 = θ0 + α0

d0
‖d0‖

for t = 1, . . . ,T − 1 do
Sample τt of length H from MDP M and πθt
ut = λ(τt)(1− w(τt |θt−1, θt))
λt = ηtλ(τt) + (1− ηt)(λt−1 + ut)
rt = ∇λF (λt)
vt = g(τt , θt , rt−1)− w(τt |θt−1, θt)g(τt , θt−1, rt−2)
dt = ηtg(τt , θt , rt−1) + (1− ηt)(dt−1 + vt)
θt+1 = θt + αt

dt
‖dt‖

end for
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1. Simpler Variance Reduction
Theoretical Guarantees

I Challenge: coupled recursive estimation errors for stochastic
PG and occupancy measure VR estimates.

Theorem (Sample complexities)

Under regularity assumptions on the softmax parametrization and
the utility function F ,

I Õ(ε−3) samples to reach an ε-stationary point of the
objective function ,

I If F is further concave and the policy overparametrized,
Õ(ε−2) samples to reach an ε-globally optimal policy .
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Simulations
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Figure 1: (right) Nonlinear objective maximization in the FrozenLake
environment; (left) Standard RL in the CartPole environment.
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2. Large State-Action Space Setting
Limitations and Contributions

I Prior work: Tabular setting for state-action occupancy
measure estimation.

I Contribution:

Linear function approximation of the occupancy measure

λπθ(s, a) ≈ 〈φ(s, a), ωθ〉 , ωθ ∈ Rm ,m << |S| × |A| .

Linear regression procedure

I K steps of SGD over the following objective:

Lθ(ω)
def
= Es∼ρ,a∼U(A)[(λπθ(s, a)− 〈φ(s, a), ω〉)2] ,

I using Monte-Carlo estimates for the targets λπθ (s, a) for each
state-action pair sampled at each step k ≤ K .
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2. Large State-Action Space Setting
Theoretical Guarantees

Theorem (Sample complexity)

Under

1. regularity of the utility function F ,

2. smoothness of the policy parametrization ,

3. standard assumptions on the feature map ,

stochastic PG with the linear regression subroutine requires

Õ(ε−4) samples

to guarantee an ε-first-order stationary point of the objective
function up to a function approximation error floor.
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Thank you for your attention

Contact: barakat9anas@gmail.com
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