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Motivation
• Target network mechanism was

proposed for DQN. Several deep RL
actor-critic use this trick. Is this the-
oretically sound?

• Here, we look at linear FA to pave
the way for nonlinear FA.

• Even in this setting, not understood
for AC. Some related works:
[1] single timescale target-TD,
[2] value-based methods.

MDP and RL problem

• MDP (S,A, p, R, ρ, γ).

• Policy π : S → ∆(A).

• "regular" policy parametrization
πθ (e.g. softmax).

max
θ∈Rd

J(πθ) := Eρ,πθ

[
+∞∑
t=0

γtRt+1

]
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where Vπθ (s) ≈ Vω(s) = ωTφ(s) and
ω ∈ Rm for m� |S|.

Target-based Actor-Critic
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Critic convergence analysis

• Multi-timescales SA [3, 4]

Theorem Under standard assumptions (Markov chain ergodicity, stepsizes, inde-
pendence of the features), if αtξt → 0 and ξt

βt
→ 0,

lim
t
‖ωt − ω∗(θt)‖ = 0 w.p.1 .

where ω∗(θ) solution to some linear system ∀ θ.

• same interpretation as TD-like solution with linear FA [5]

Critic finite-time analysis

Let 0 < β < ξ < α < 1. Set αt = c1
tα , ξt = c2

tξ
, βt = c3

tβ
. Then,
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Actor convergence analysis

Theorem Under same assumptions, if αtξt → 0 and ξt
βt
→ 0,

lim inf
t

Ñ
‖∇J(θt)‖ − ‖b(θt)‖︸ ︷︷ ︸

bias due to linear FA

é
≤ 0 , w.p.1

Actor finite-time analysis

Lemma Set αt = c1
tα , ξt = c2

tξ
, βt = c3

tβ
with 0 < β < ξ < α < 1. Then,
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Theorem (Actor with tuned stepsizes) Set αt = c1
t2/3

, ξt =
c2
t1/2

, βt = c3
t1/3

. Then,
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ã
+O (εFA) .

Conclusion and Perspectives

Contributions: convergence and finite-time analysis: critic (TD-like solution) and
actor (gradient norm control and average expected gradient norm).

Perspectives:

• Nonlinear FA for deep RL.

• Off-policy learning.
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