Convergence Analysis of a Momentum Algorithm with Adaptive Step Size for Nonconvex Optimization

Anas Barakat

Joint work with Pascal Bianchi

LTCI, Télécom Paris, Institut polytechnique de Paris

11th OPT Workshop on Optimization for Machine Learning December 14th, 2019

A Momentum Algorithm with Adaptive Step Size

- ▶ ADAM famous **BUT** convergence issues (Reddi et al., 2018).
- Several variants : Yogi, AdaBound, AdaShift, Nadam, QHAdam, RAdam ...
- ► **Goal**: convergence rates for adaptive algorithms (ADAM in particular) for **nonconvex** optimization.

Algorithm

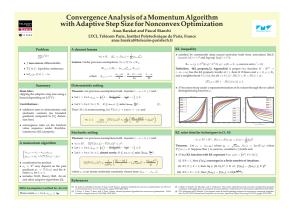
$$\begin{cases} x_{n+1} = x_n - a_{n+1}p_{n+1} \\ p_{n+1} = p_n + b\left(\nabla f(x_n) - p_n\right) \end{cases}$$

where $a_n \in \mathbb{R}^d_+$ $b \ge 0$, $x_0, p_0 \in \mathbb{R}^d$.

Contributions

Main Idea

Clipping the effective step size a_{n+1} :


$$0 < \delta \le a_{n+1} \le a_{sup}(L) \tag{1}$$

Results

- ▶ O(1/n) convergence rate for ADAM in deterministic and stochastic settings. (control of $\min_{0 \le k \le n-1} \|\nabla f(x_k)\|^2$).
- Convergence rate analysis of the objective function using the Kurdyka-Łojasiewicz (KŁ) property.

Thank you for your attention

Feel free to come to my poster

For more details: article available on the Workshop page / arXiv.

AB, P. Bianchi. Convergence Analysis of a Momentum Algorithm with Adaptive Step Size for Nonconvex Optimization