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Multi-Agent Reinforcement Learning

(a) Autonomous Driving (b) Automated warehouse robots

(c) Smart Grids (d) Communication Networks



Constraints in MARL

▶ Why constraints?

▶ Physical system constraints

▶ Safety considerations

▶ ...

▶ Type of constraints?

▶ ‘Hard’ constraints

▶ e.g. collision avoidance

▶ ‘Soft’ constraints: approximately satisfying the constraints can be tolerated

▶ average user’s total latency thresholds in wireless networks
▶ average power constraints in signal transmission



Mathematical Framework

▶ Stochastic Games [Shapley, 1953]

▶ G = (S,N , {Ai , ri}i∈N , µ,P, κ)

▶ joint policy π ∈ Π =
∏

i∈N ∆(Ai )
S

▶ Value function for each agent i ∈ N

Vri (π) := Es∼µ

[
T∑
t=0

ri (st , at) | s0 = s

]

▶ Constrained Markov Games [Altman and Shwartz, 2000]

▶ cost functions ci : S ×A → [0, 1] for each agent i ∈ N
▶ Thresholds αi
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Independent Learning

▶ Learning protocol (see e.g. [Ozdaglar et al., 2021]), a.k.a. uncoupled learning

▶ agents can only observe realized state and their own reward and action

▶ Motivation

▶ Scaling (‘curse of multi-agents’)

▶ Privacy protection

▶ Communication cost



Example: Dynamic load balancing [Yao and Ding, 2022]

Figure 2: Source: geeksforgeeks.org

▶ Assign clients to servers in distributed computing

▶ minimize communication overhead for low-latency response

▶ scale across large data centers

▶ Can be modelled as an MPG



Markov Potential Games
▶ Extension of potential games

Definition

∀s ∈ S,∃Φs : Π → R s.t. ∀i ∈ N , (πi , π−i ) ∈ Π, and π′
i ∈ Π′

i ,

Vri ,s(πi , π−i )− Vri ,s(π
′
i , π−i ) = Φs(πi , π−i )− Φs(π

′
i , π−i )

▶ includes identical interest case and beyond

▶ actively investigated recently [Macua et al., 2018, Leonardos et al., 2022,
Fox et al., 2022, Zhang et al., 2022b, Song et al., 2022, Ding et al., 2022,
Zhang et al., 2022a, Maheshwari et al., 2023, Zhou et al., 2023].

ϵ-approximate Nash equilibrium (ϵ-NE)

π∗ ∈ Π s.t. ∀i ∈ N , π′
i ∈ Πi ,Vri (π

∗)− Vri (π
′
i , π

∗
−i ) ≤ ϵ.



Constrained Markov Potential Games

▶ subset of feasible policies Πc := {π ∈ Π | Vc(π) ≤ α}; α ∈ R,

Vc(π) := Es0∼µ

[
T∑
t=0

c(st , at)

]

▶ Here, same cost function for all agents, other case more challenging

ϵ-approximate constrained NE

π∗ ∈ Πc s.t. ∀i ∈ N , π′
i ∈ Πi

c(π
∗
−i ), Vri (π

∗)− Vri (π
′
i , π

∗
−i ) ≤ ϵ.
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Related Work

centralized independent

MPG
Nash-CA

[Song et al., 2022]

Independent PGA
[Leonardos et al., 2022],[Zhang et al., 2022b]

[Ding et al., 2022]

CMPG
CA-CMPG

[Alatur et al., 2023]
?



Related Work (centralized setting)

▶ Nash-CA for MPGs [Song et al., 2022]

▶ Turn-based, fix π
(t)
−i

▶ Solve an MDP computing a best response policy

π̂
(t+1)
i = argmax

πi∈Πi

Vri (πi , π
(t)
−i )

▶ Nash-CA for CMPGs [Alatur et al., 2023]

▶ Turn-based, fix π
(t)
−i

▶ Solve a CMDP computing a best response policy

π̂
(t+1)
i = argmax

πi∈Πi
c (π

(t)
−i )

Vri (πi , π
(t)
−i )



Related Work (independent learning)

▶ Independent PGA [Leonardos et al., 2022]

Simultaneously ∀i ∈ N ,

π
(t+1)
i = PΠi

[
π
(t)
i − η∇πiVri (π

(t))
]

π(t+1) = PΠ

[
π(t) − η∇πΦ(π

(t))
]

▶ ϵ-stationary point of Φ is O(ϵ)-NE



Challenges

▶ (no centralization) Environment is non-stationary from the viewpoint of each
agent

min
(π1,...,πm)∈Πc

Φ(π) ; Πc := {π ∈ Π | Vc(π) ≤ α}

▶ nonconvex objective and constraint

▶ constraint couples πi ’s

▶ strong duality does not hold [Alatur et al., 2023]
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Our Approach

min
(π1,...,πm)∈Πc

Φ(π) ; Πc := {π ∈ Π | Vc(π) ≤ α} (1)

Lemma

If π is an ϵ-KKT policy of (1), then π is a constrained O(ϵ)-NE.

▶ How to find an ϵ-KKT policy?



How to find ϵ-KKT policy?

▶ proximal-point-like update
[Boob et al., 2023, Ma et al., 2020, Jia and Grimmer, 2023]

π(t+1) = argmin
π∈Π

{
Φ (π) +

1

2η
∥π − π(t)∥2

∣∣∣ Vc(π) +
1

2η
∥π − π(t)∥2 ≤ α

}

▶ Φ and Vc weakly convex ⇒ subproblem obj. and constr. strongly convex

▶ as
∥∥π(t+1) − π(t)

∥∥ → 0, regularized constraint approaches original constraint

Can show:∥∥∥π(t+1) − π(t)
∥∥∥ ≤ ϵ =⇒ π(t+1) is O(ϵ)-KKT for min

(π1,...,πm)∈Πc

Φ(π)

▶ How to solve the proximal-point subproblem?
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How to solve the proximal-point subproblem?

π(t+1) = argmin
π∈Π

{
Φ (π) +

1

2η
∥π − π(t)∥2

︸ ︷︷ ︸
=:Φ

η,π(t) (π)

∣∣∣ Vc(π) +
1

2η
∥π − π(t)∥2

︸ ︷︷ ︸
=:V c

η,π(t)
(π)

≤ α
}

▶ Solve via gradient switching subroutine [Lan and Zhou, 2020]:

π(t,k+1) =

PΠ

[
π(t,k) − νk∇πΦη,π(t,k)(π(t,k))

]
if V c

η,π(t,k)(π
(t,k))− α ≤ δk ,

PΠ

[
π(t,k) − νk∇πV

c
η,π(t,k)(π

(t,k))
]

otherwise

▶ independent implementation?
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Independent implementation
▶ Observation:

∇πiΦη,π′(π) = ∇πiΦ(π) +
1

η

(
πi − π′

i

)
= ∇πiVri (π) +

1

η

(
πi − π′

i

)

⇒ gradient switching update

π(t,k+1) =

PΠ

[
π(t,k) − νk∇πΦη,π(t,k)(π(t,k))

]
if V c

η,π(t,k)(π
(t,k))− α ≤ δk ,

PΠ

[
π(t,k) − νk∇πV

c
η,π(t,k)(π

(t,k))
]

otherwise

is equivalent to independently, for all i ∈ N ,

π
(t,k+1)
i =



PΠi

[
π
(t,k)
i − νk∇πiVri (π

(t,k))− νk
η (π

(t,k)
i − π

(t)
i )

]
if Vc(π

(t,k)) + 1
2η∥π

(t,k) − π(t)∥2 − α ≤ δk

PΠi

[
π
(t,k)
i − νk∇πiVc(π

(t,k))− νk
η (π

(t,k)
i − π

(t)
i )

]
otherwise
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proximal update



Outline

1. Motivation and Problem Formulation

▶ Independent Learning
▶ MPGs
▶ CMPGs

2. Related Work & Challenges

3. Algorithm

4. Iteration and Sample Complexity Analysis

5. Simulations: Distributed Energy Marketplace



Iteration & Sample Complexity Result

Assumptions

▶ Initial feasibility: π(0) satisfies Vc(π
(0)) < α

▶ Uniform Slater’s condition:

∃ζ > 0 s.t. ∀π′ ∈ Π with Vc(π
′) < α, ∃π ∈ Π s.t. V c

η,π′(π) ≤ α− ζ

Theorem

For ϵ > 0, using ϵ-greedy exploration, after running iProxCMPG for suitably chosen
η,T ,K, and {(νk , δk)}0≤k≤K , ∃t ∈ [T ] s.t. in expectation π(t) is a constrained ϵ-NE.

▶ Exact gradients: total iteration complexity 1 Õ(ϵ−4)

▶ Finite sample: total sample complexity 1 Õ(ϵ−7)

1 Õ(·) hides logarithmic dependencies in 1/ϵ, and polynomial dependencies in m, S ,Amax, 1− γ, ζ, D
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1 Õ(·) hides logarithmic dependencies in 1/ϵ, and polynomial dependencies in m, S ,Amax, 1− γ, ζ, D



Iteration & Sample Complexity Result

Assumptions

▶ Initial feasibility: π(0) satisfies Vc(π
(0)) < α

▶ Uniform Slater’s condition:

∃ζ > 0 s.t. ∀π′ ∈ Π with Vc(π
′) < α, ∃π ∈ Π s.t. V c

η,π′(π) ≤ α− ζ

Theorem

For ϵ > 0, using ϵ-greedy exploration, after running iProxCMPG for suitably chosen
η,T ,K, and {(νk , δk)}0≤k≤K , ∃t ∈ [T ] s.t. in expectation π(t) is a constrained ϵ-NE.

▶ Exact gradients: total iteration complexity 1 Õ(ϵ−4)

▶ Finite sample: total sample complexity 1 Õ(ϵ−7)

1 Õ(·) hides logarithmic dependencies in 1/ϵ, and polynomial dependencies in m, S ,Amax, 1− γ, ζ, D



Comparison

centralized independent

MPG
Nash-CA

[Song et al., 2022]
O(ϵ−3)

Independent PGA
[Leonardos et al., 2022],[Zhang et al., 2022b]

[Ding et al., 2022]
O(ϵ−5)

CMPG
CA-CMPG

[Alatur et al., 2023]

Õ(ϵ−5)

Our algorithm

Õ(ϵ−7)
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Simulations

▶ Pollution tax model

▶ Distributed energy marketplace, inspired by [Narasimha et al., 2022]

S : energy demand

ai : energy contribution ri(s, a) : profit

c(s, a) : grid capacity
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Future Work

▶ Sample complexity improvement to match centralized algorithms?

▶ “Fully” independent learning dynamics (agents with different algorithms)?

▶ Scaling to large spaces via function approximation

▶ Beyond CMPGs
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Appendix



Simulations
Distributed energy marketplace

▶ m energy providers, choosing amount of energy to contribute
Ai = {0, . . . ,Ai − 1}

▶ S = {0, . . . ,S − 1} energy demand (high to low)

▶ profit ri (s, ai , a−i ) = c0a
2
i − c1a

2
i

∑
i∈N ai − aic

s
2 for some c0, c1, c2 ∈ R

▶ sample w ∼ U({0, 1, . . . ,W }) and set

s ′ =

{
P[0,S−1]

(∑
i∈N ai − w

)
w.p. 0.9

w w.p. 0.1

▶ c(s, a) =
∑

i∈N ai , require Vc(π) ≤ αe for some αe ∈ R

=⇒ satisfies CMPG condition, see [Narasimha et al., 2022]
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Simulations

Pollution tax model

▶ m factories that choose production volume Ai = {L,H}

▶

clean polluted

∃i ∈ N s.t. ai = H

∃i ∈ N s.t. ai = Helse

else

▶ let ri (s, a) = −TPI{s=polluted} +

{
PL if ai = L

PH else
and c(s, a) = |{i ∈ N | ai = H}|
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Iteration & Sample Complexity Result

Assumptions

▶ Initial feasibility: π(0) satisfies Vc(π
(0)) < α

▶ Uniform Slater’s condition:

∃ζ > 0 s.t. ∀π′ ∈ Π with Vc(π
′) < α, ∃π ∈ Π s.t. V c

η,π′(π) ≤ α− ζ

Theorem

For ϵ > 0, using ϵ-greedy exploration, after running iProxCMPG for suitably chosen
η,T ,K, and {(νk , δk)}0≤k≤K , there exists t ∈ [T ] s.t. in expectation π(t) is a
constrained ϵ-NE.

▶ Exact gradients: total iteration complexity 2 Õ(ϵ−4)

▶ Finite sample: total sample complexity 1 Õ(ϵ−7)

2 Õ(·) hides logarithmic dependencies in 1/ϵ, and polynomial dependencies in m, S ,Amax, 1− γ, ζ,
and D.



Proof idea (exact gradients).

1. for K = O(ϵ−2), inner loop guarantees sufficiently exact proximal update

2. for T = O(ϵ−2), outer loop guarantees ∃t ∈ [T ] s.t.
∥∥π(t+1) − π(t)

∥∥ = O(ϵ)

=⇒ π(t+1) satisfies ϵ-KKT conditions for minπ∈Πc Φ(π)

=⇒ π(t+1) satisfies ϵ-KKT conditions for playerwise problem with π
(t+1)
−i fixed:

min
πi∈Πi

c (π
(t+1)
−i )

Vri (πi , π
(t+1)
−i ) (2)

gr .dom.
=⇒ for all i ∈ N , bound duality gap of (2) via gradient dominance
=⇒ together with Vc(π

(t+1)) ≤ α, it follows that π(t+1) is constrained O(ϵ)-NE

□



← O(ǫ−2) times

← O(ǫ−3) times

B = O(ǫ−2)

variance O(ǫ−1)

O(ǫ−7)

Proof idea (finite sample).

□



Approach 1: Primal-dual method

L(π, λ) = Φ(π) + λ(Vc(π)− α)

▶ if strong duality holds, then

inf
π∈Π

sup
λ≥0

L(π, λ) = sup
λ≥0

inf
π∈Π

L(π, λ)



Approach 1: Primal-dual method

L(π, λ) = Φ(π) + λ(Vc(π)− α)

▶ if strong duality [Alatur et al., 2023] holds, then

inf
π∈Π

sup
λ≥0

L(π, λ) = sup
λ≥0

inf
π∈Π

L(π, λ)


