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Game Theory Formalism

» Finite number of players N :={1,--- /N}.
> Strategy set of player i: Xj, joint strategy set: X := H,N:1 X .

» Utility u; : X — R assumed to be concave w.r.t. its ith variable and differentiable.

ZOOM on the strategy spaces of agents (typically convex).
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Examples of Games

» Finite normal-form games X; = A(A;): Golden standard.

» Convex games with ball strategy sets X; = B(0,r;).

> PSD matrix games X; = Agy .

» Each player controls a PSD matrix variable (e.g. a signal covariance matrix) .

» Applications in wireless communication networks for the competitive maximization of
mutual information in interfering networks [ , ,

, ]

> Quantum games X; = AHQr )
» Strategies of the players are quantum states represented by density matrices.

> Utility is the expected value of a measurement on the joint state.
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Example 1: Distance Metric Learning

> E.g. Learn a Mahalanobis distance given a dataset {x;}1<j<ny where x; € R9 .

> [ ]

a i d2 iy Xj

2 iy, (x> %)
(xi—x) T M(xi—x;) (1)

st Y () <1
(ij)es
Simplex-Spectraplex Game

min _max f(x,Y):= (Y, A(x)) + (b,x) + (C,Y) , (2)

x€AM-LYEA 4
+
where A : R™ — S? is the linear map given by A(x) = 3.7, x;A; for some A; € S¢.

» Smoothing | ] in O(1/¢) iterations, interior point methods ...

3/20



Example 2: Fermat-Weber Problem

P
i = A,' — b,' .
i {g(X) ; | Aix Hz}

> Min-max reformulation: variational characterization of the maximal eigenvalue,

p
ngmax(,ﬁ;x— ZufganK i, Aix — bj) 7 = r‘ggﬁ {y,Ax — b) 7o

where A; := (0,AT)" € Rm1)xd and b; := (0,bT)" € R™1, J = LI+L,

Second-Order Cone Min-Max Game

min max f(x,y):= (Ax,y) — (b, ,A:=2R(00 A). (3
e g el g UG = B30 = () © A @

» |IP method of | |, extension of smoothing [ ].
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Questions

» Can we unify all these games?

» Can we learn Nash equilibria in the 2-player zero-sum setting using a

SINGLE ALGORITHM for all these games simultaneously?

Two-player zero-sum SCGs

min  max f(x,y
x€Ax, yEAK, (x.y)
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SHORT ANSWERS

» Can we unify all these games?

SYMMETRIC CONE GAMES

» Can we learn Nash equilibria efficiently in the 2-player zero-sum setting using a

single algorithm for all these games simultaneously?

OPTIMISTIC SYMMETRIC CONE MULTIPLICATIVE WEIGHTS
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QOutline

1. Symmetric Cones and SC Games

2. Optimistic Online Learning in Symmetric Cone Games

3. Applications to Min-Max Problems over Symmetric Cones

Two-player zero-sum SCGs

min  max f(x,y
x€Ax, yEAK, (x.y)
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Examples of Symmetric Cones and corresponding EJAs

Inner product  Jordan product

EJAJ Cone of squares K
{(x,y) xoy
Euclidean space (R") Yo Xiyi (XiYi)i=1,-.n nonnegative orthant (R')
Real sym. matrices (S") tr(xy) Ty +yx) PSD cone (s)

Jordan spin algebra (L") 237 ;xy; (X'y,xy+y1X) second-order cone (L7)

» Characterization of SCs and formalism of Euclidean Jordan Algebras
[ |: Any symmetric cone is the cone of squares
{xox:x € J} of some EJA J.

8/20



Strategy sets: Generalized Simplexes

Generalized Simplex

If (J,0) is an EJA and K its cone of squares,

A :={x e K :tr(x) =1}.

Symmetric Cone K

Generalized Simplex Ag

Nonnegative orthant R
Real PSD symmetric matrices S
PSD Hermitian matrices H

Second-order cone L7}

Simplex A" l={xeR7:Y}7 x=1}
Spectraplex Agy = {X € S} : Tr(X) =1}
Spectraplex Apr = {X € Hj : Tr(X) =1}

Ball Apn ={(3,x) eR": [|x|]2 < 3}
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Definition: Symmetric Cone Games

» Finite number of players N := {1,--- ,N}.

> Strategy set of player i: generalized simplex A, where K; symmetric cone.

> Notation: Space of joint strategies & := [[;c\r Ak,

> Utility u; : X — R assumed to be concave w.r.t. its ith variable and differentiable.

» Notation: Payoff vector,

Vx € X, m(x) = (m;(x));e/\/, m,-(x) = VX,.U,‘(X,',X_,'),VI' ceN.
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Examples of Symmetric Cone Games

» Finite normal-form games
» Convex games with ball strategy sets
» PSD matrix games

» Quantum games

» Nonnegative orthant
» 2nd order cone
» Cone of PSD matrices

» Cone of complex PSD matrix
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Online Learning in Symmetric-Cone Games

Initialization: x} € Ak, Vi e N/
For t=1,...,T:
For i € N (simultaneously):
Player i observes their (and only theirs) payoff mf € J;

Player i receives linear payoff (m?, x})
Player i computes their next strategy x;,; € Ag;
Output: X = LS xf Vie N.

*canonical EJA inner product (x,y) = tr(x o y).

Playerwise Regret

R(T) = sup > uf(x,x";) — uixf,xt;), VieN.
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Optimistic Follow The Regularized Leader

» Fix player i € /.

OFTRL
t
xt! = argmax n <Z m* + rﬁt+1,x> - ®(x)
XEA ~~ — ——
r step size k=1 SC regularizer

where mK = V, ui(xk, x%.) and (/?) is a predictor sequence, typically M1 = mt.

> Why optimism?
» Which regularizer?
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Why Optimistic Online Learning? Related work

» In min-max problems (under min-max theorem):
> average regret is bounded above by ¢ = time-average iterate is an e-saddle point.

Fully adversarial setting Game setting
Average regret Average regret in 2pZS and N-player NF
o(T7'7?) O(T ™)
> : , :
, ] -
> | ] zero-sum quantum games, optimization perspective.
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Regularizer? Symmetric Cone Negative Entropy

Negative Entropy
Given the EJA J and its cone of squares K, ®ept @ int(K) — R:

Vx € int(K), ®ent(x) = tr(xolnx) = Z)\ InA;, (SCNE)

> x =37 1 \ig; € int(K) spectral decomposition of x.
» In:int(K) — J Lowner extension of the scalar log, i.e. Inx =>"7_;In(\j)q; .
» Note that A\; > 0 for every 1 < < r as x € int(K).

> Exponential mapping exp : J — int(K) is defined by exp(x) = >"7_; exp(\j) g; .
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Strong Convexity of Symmetric Cone Negative Entropy

Theorem
Let (J,0) be an EJA and let KC be its cone of squares. Then,

. 1
Vx,y S mt(A/C)v D¢‘ent(X7y) > E”X - yH%r,l . (4)

where Do, is the Bregman divergence Do, . (Xx,y) =tr(xolnx —xolny +y —x).

» Proof sketch:

Do(x, ) (EZ) Do(T(x), T(y)) = KL(u(x)||u(y)) > llu(x)-u(y)[ = %HX_YH%r,la

1. The diagonal mapping is a convex combination of EJA automorphisms
2. Use joint convexity of the relative entropy and properties of automorphisms.

» Alternative proof | | (Hessian and duality).
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Optimistic Symmetric Cone Multiplicative Weights Update

» Regularizer ® = Symmetric Cone Negative Entropy
OSCMWU Algorithm

1
_ ~ 41 t+1 _ exp(w'*) v
== 7 t>1
= (Z m” + m > X tr(exp(wt1)) ’ =

where () is a predictor sequence, typically m**t = mt.

» mttl = 0: SCMWU introduced and studied recently in [
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Regret in Symmetric Cone Games

Theorem [ ]
Under smoothness of payoff vectors, if each player i € N' runs OSCMWU for T rounds
on Ag; with stepsize n = 1/(2 NZN L2)and set || - || = | - |ler1 - Then

where r;(T) is the i-th player's regret and R; = sup,ca, ®(x) —infica, ®(x).
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Application to 2-Player Zero-Sum Symmetric Cone Games
Min-Max Problem

min max f(x,y
x€Ax, yEAK, (),

> f: 71 x J> — R is convex-concave and differentiable.

» K1, are arbitrary symmetric cones and Ag,, Ak, their generalized simplexes.

Theorem (2-player Zero-Sum SCG) - adaptation of folklore result

If both players run OSCMWU with stepsize n = 1/(24/2(L% + L3)),

T2

2(Inr +Inr)y/2(L3 + L3) 1
£ —

ri =rank(J;),i =1,2.

T T YT -,—Zy € .
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Conclusion

> SCGs: Exploit geometric structure and unify several existing problems.

» Normal form, quantum, PSD games, convex games with ball strategy sets.

» OSCMWU: single algorithm applying in a unified way instead of there exist
ad-hoc algorithms for special cases of our setting.

» Log dependence on the intrinsic dimension of the problem.

» Applications beyond normal-form and quantum games.

P simplex-spectraplex, second-order cone games.
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Symmetric Cones and Euclidean Jordan Algebras |
Definition of symmetric cones

> A cone K in an inner product space is symmetric if self-dual and homogeneous.

Let J be a finite dim. vector space with a bilinear product o : J x J — J.
» (J,0) Jordan algebra if:

Vx,y€J, xoy=yox, x> olxoy)=xo(x?0y).

XOX

» (J,0,(+-)): Euclidean Jordan algebra over R if equipped with an associative
inner product (-,-), i.e. for all x,y,z€ J,(xoy,z) =(y,x02z).

Characterization of Symmetric cones

» Any symmetric cone is the cone of squares {x o x : x € J} of some EJA J

[ ]



A Simplex-Spectraplex Game (2/2) |

> lteration complexity of OSCMWU: T > 4(In mIn d) max; [ Aill.ce jterations.

€

> Prior work:
» Smoothing technique [ ] in O(1/¢) iterations (similar).

» Frank-Wolfe method + smoothing | ] in O(1/£?) iterations but
only O(d?) runtime cost.

» Interior point methods: high precision but prohibitive per-iteration cost for
large-scale problems.



A 2nd-Order Cone Min-Max Game: (2/2) |

min max f(x,y):= (Ax,y) — (b, A-=2R(0 A).
o et g D) = B50) = () © A

» lteration complexity of OSCMWU: T > w iterations.

» Prior work:

> Extension of the smoothing technique of Nesterov to EJAs | ]

» Interior point method of | ] requires fewer iterations but much
higher per-iteration cost.



Regret Bounded by Variation in Utilities |

RVU
For (x*) generated by OFTRL with m*! = m® and a regularizer ® that is 1-strongly
convex w.r.t. a norm || - ||, for all T > 1,
T R T 1 T
Vx € Ag, fi(x) — f(x — — mt! 3—— xt— X112,
; (x) = F1(x* < EZ: =2, ; | I
where R = sup,ca, ®(x) —infica, ®(x), || - ||« is the dual norm and (., -) the EJA

inner product.
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Online Symmetric-Cone Optimization (OSCO)

Initialization: x! € Ax == {x € K :tr(x) =1}
For t=1,...,T:

Observe the payoff mt € J

Receive linear payoff (mt, x*)

Compute new iterate xtt1 € Ax
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