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Game Theory Formalism

▶ Finite number of players N := {1, · · · ,N} .

▶ Strategy set of player i : Xi , joint strategy set: X :=
∏N

i=1Xi .

▶ Utility ui : X → R assumed to be concave w.r.t. its ith variable and differentiable.

ZOOM on the strategy spaces of agents (typically convex).
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Examples of Games

▶ Finite normal-form games Xi = ∆(Ai ): Golden standard.

▶ Convex games with ball strategy sets Xi = B(0, ri ) .

▶ PSD matrix games Xi = ∆Sn+ .

▶ Each player controls a PSD matrix variable (e.g. a signal covariance matrix) .

▶ Applications in wireless communication networks for the competitive maximization of
mutual information in interfering networks [Arslan et al., 2007, Scutari et al., 2008,
Mertikopoulos and Moustakas, 2015, Majlesinasab et al., 2019].

▶ Quantum games Xi = ∆Hn
+
.

▶ Strategies of the players are quantum states represented by density matrices.

▶ Utility is the expected value of a measurement on the joint state.
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Example 1: Distance Metric Learning

▶ E.g. Learn a Mahalanobis distance given a dataset {xi}1≤i≤N where xi ∈ Rd .

▶ [Ying and Li, 2012]

max
M∈Sd+

min
(i ,j)∈D

d2
M (xi , xj)︸ ︷︷ ︸

(xi−xj )TM(xi−xj )

s.t.
∑

(i ,j)∈S
d2
M (xi , xj) ≤ 1

(1)

Simplex-Spectraplex Game

min
x∈∆m−1

max
Y∈∆Sd+

f (x ,Y ) := ⟨Y ,A(x)⟩+ ⟨b, x⟩+ ⟨C ,Y ⟩ , (2)

where A : Rm → Sd is the linear map given by A(x) =
∑m

i=1 xiAi for some Ai ∈ Sd .

▶ Smoothing [Nesterov, 2007] in O(1/ε) iterations, interior point methods ...
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Example 2: Fermat-Weber Problem

min
x∈B(0,R)

{
g(x) :=

p∑
i=1

∥Aix − bi∥2

}
.

▶ Min-max reformulation: variational characterization of the maximal eigenvalue,

g(x) =

p∑
i=1

λmax(Āix − b̄i ) =

p∑
i=1

max
ūi∈∆K

⟨ūi , Āix − b̄i ⟩J = max
y∈∆p

K

⟨y , Āx − b̄⟩J p

where Āi :=
(
0,AT

i

)T ∈ R(m+1)×d and b̄i :=
(
0, bTi

)T ∈ Rm+1, J = Ld+1.

Second-Order Cone Min-Max Game

min
x̄=(1/2,x̃)∈∆Ld+1

+

max
y∈

∏p
i=1 ∆Ld+1

+

{
f (x̄ , y) := ⟨Ã x̄ , y⟩ − ⟨b̄, y⟩

}
, Ã := 2R(0 Ā) . (3)

▶ IP method of [Xue and Ye, 1997], extension of smoothing [Baes, 2006].
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Questions

▶ Can we unify all these games?

▶ Can we learn Nash equilibria in the 2-player zero-sum setting using a

SINGLE ALGORITHM for all these games simultaneously?

Two-player zero-sum SCGs

min
x∈∆K1

max
y∈∆K2

f (x , y)
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SHORT ANSWERS

▶ Can we unify all these games?

SYMMETRIC CONE GAMES

▶ Can we learn Nash equilibria efficiently in the 2-player zero-sum setting using a

single algorithm for all these games simultaneously?

OPTIMISTIC SYMMETRIC CONE MULTIPLICATIVE WEIGHTS
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Outline

1. Symmetric Cones and SC Games

2. Optimistic Online Learning in Symmetric Cone Games

3. Applications to Min-Max Problems over Symmetric Cones

Two-player zero-sum SCGs

min
x∈∆K1

max
y∈∆K2

f (x , y)

v
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Examples of Symmetric Cones and corresponding EJAs

▶ Characterization of SCs and formalism of Euclidean Jordan Algebras
[Faraut and Korányi, 1994]: Any symmetric cone is the cone of squares
{x ◦ x : x ∈ J } of some EJA J .
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Strategy sets: Generalized Simplexes

Generalized Simplex

If (J , ◦) is an EJA and K its cone of squares,

∆K := {x ∈ K : tr(x) = 1} .
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Definition: Symmetric Cone Games

▶ Finite number of players N := {1, · · · ,N} .

▶ Strategy set of player i : generalized simplex ∆Ki
where Ki symmetric cone.

▶ Notation: Space of joint strategies X :=
∏

i∈N ∆Ki .

▶ Utility ui : X → R assumed to be concave w.r.t. its ith variable and differentiable.

▶ Notation: Payoff vector,

∀x ∈ X , m(x) = (mi (x))i∈N , mi (x) = ∇xiui (xi , x−i ),∀i ∈ N .
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Examples of Symmetric Cone Games

▶ Finite normal-form games

▶ Convex games with ball strategy sets

▶ PSD matrix games

▶ Quantum games

▶ Nonnegative orthant

▶ 2nd order cone

▶ Cone of PSD matrices

▶ Cone of complex PSD matrix
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Online Learning in Symmetric-Cone Games

Initialization: x1i ∈ ∆Ki
,∀i ∈ N

For t = 1, . . . ,T :
For i ∈ N (simultaneously):
Player i observes their (and only theirs) payoff mt

i ∈ Ji

Player i receives linear payoff ⟨mt
i , x

t
i ⟩

Player i computes their next strategy x it+1 ∈ ∆Ki

Output: x̄ iT = 1
T

∑T
t=1 x

t
i , ∀i ∈ N .

*canonical EJA inner product ⟨x , y⟩ = tr(x ◦ y).

Playerwise Regret

ri (T ) := sup
x∈∆Ki

T∑
t=1

uti (x , x
t
−i )− ui (x

t
i , x

t
−i ) , ∀i ∈ N .
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Optimistic Follow The Regularized Leader

▶ Fix player i ∈ N .

OFTRL

x t+1 = argmax
x∈∆K

 η︸︷︷︸
step size

〈
t∑

k=1

mk + m̃t+1, x

〉
− Φ(x)︸︷︷︸

SC regularizer


where mk = ∇xiui (x

k
i , x

k
−i ) and (m̃t) is a predictor sequence, typically m̃t+1 = mt .

▶ Why optimism?

▶ Which regularizer?
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Why Optimistic Online Learning? Related work

▶ In min-max problems (under min-max theorem):
▶ average regret is bounded above by ε =⇒ time-average iterate is an ε-saddle point.

Fully adversarial setting

Average regret

O(T−1/2)

Game setting

Average regret in 2pZS and N-player NF

Õ(T−1)

▶ [Daskalakis et al., 2011, Chiang et al., 2012, Rakhlin and Sridharan, 2013,
Syrgkanis et al., 2015, Daskalakis et al., 2021] ...

▶ [Vasconcelos et al., 2023] zero-sum quantum games, optimization perspective.
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Regularizer? Symmetric Cone Negative Entropy

Negative Entropy

Given the EJA J and its cone of squares K, Φent : int(K) → R:

∀x ∈ int(K), Φent(x) = tr(x ◦ ln x) =
r∑

i=1

λi lnλi , (SCNE)

▶ x =
∑r

i=1 λiqi ∈ int(K) spectral decomposition of x .

▶ ln : int(K) → J Löwner extension of the scalar log, i.e. ln x =
∑r

i=1 ln(λi )qi .

▶ Note that λi > 0 for every 1 ≤ i ≤ r as x ∈ int(K) .

▶ Exponential mapping exp : J → int(K) is defined by exp(x) =
∑r

i=1 exp(λi ) qi .
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Strong Convexity of Symmetric Cone Negative Entropy

Theorem

Let (J , ◦) be an EJA and let K be its cone of squares. Then,

∀x , y ∈ int(∆K), DΦent(x , y) ≥
1

2
∥x − y∥2tr ,1 . (4)

where DΦent is the Bregman divergence DΦent(x , y) = tr(x ◦ ln x − x ◦ ln y + y − x) .

▶ Proof sketch:

DΦ(x , y) ≥
(1+2)

DΦ(T (x),T (y)) = KL(u(x)||u(y)) ≥ ∥u(x)−u(y)∥21 =
1

2
∥x−y∥2tr ,1 ,

1. The diagonal mapping is a convex combination of EJA automorphisms

2. Use joint convexity of the relative entropy and properties of automorphisms.

▶ Alternative proof [Baes, 2006] (Hessian and duality).

16 / 20



Optimistic Symmetric Cone Multiplicative Weights Update

▶ Regularizer Φ = Symmetric Cone Negative Entropy

OSCMWU Algorithm

w t+1 = η

(
t∑

k=1

mk + m̃t+1

)
, x t+1 =

exp(w t+1)

tr(exp(w t+1))
, ∀t ≥ 1 ,

where (m̃t) is a predictor sequence, typically m̃t+1 = mt .

▶ m̃t+1 = 0: SCMWU introduced and studied recently in [Canyakmaz et al., 2023]
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Regret in Symmetric Cone Games

Theorem [Syrgkanis et al., 2015]

Under smoothness of payoff vectors, if each player i ∈ N runs OSCMWU for T rounds

on ∆Ki
with stepsize η = 1/(2

√
N
∑N

i=1 L
2
i ) and set ∥ · ∥ = ∥ · ∥tr ,1 . Then

N∑
i=1

ri (T ) ≤ 2

(
N∑
i=1

Ri

)
·

√√√√N
N∑
i=1

L2i , (5)

where ri (T ) is the i-th player’s regret and Ri = supx∈∆Ki
Φ(x)− infx∈∆Ki

Φ(x).
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Application to 2-Player Zero-Sum Symmetric Cone Games

Min-Max Problem

min
x∈∆K1

max
y∈∆K2

f (x , y) ,

▶ f : J1 × J2 → R is convex-concave and differentiable.

▶ K1,K2 are arbitrary symmetric cones and ∆K1 ,∆K2 their generalized simplexes.

Theorem (2-player Zero-Sum SCG) - adaptation of folklore result

If both players run OSCMWU with stepsize η = 1/(2
√

2(L21 + L22)),

T ≥
2(ln r1 + ln r2)

√
2(L21 + L22)

ε
=⇒

(
x̄T =

1

T

T∑
t=1

x t , ȳT =
1

T

T∑
t=1

y t

)
ε-SP .

ri = rank(Ji ), i = 1, 2.
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Conclusion

▶ SCGs: Exploit geometric structure and unify several existing problems.

▶ Normal form, quantum, PSD games, convex games with ball strategy sets.

▶ OSCMWU: single algorithm applying in a unified way instead of there exist
ad-hoc algorithms for special cases of our setting.

▶ Log dependence on the intrinsic dimension of the problem.

▶ Applications beyond normal-form and quantum games.

▶ simplex-spectraplex, second-order cone games.
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Symmetric Cones and Euclidean Jordan Algebras I

Definition of symmetric cones

▶ A cone K in an inner product space is symmetric if self-dual and homogeneous.

Let J be a finite dim. vector space with a bilinear product ◦ : J × J → J .

▶ (J , ◦) Jordan algebra if:

∀x , y ∈ J , x ◦ y = y ◦ x , x2︸︷︷︸
x◦x

◦(x ◦ y) = x ◦ (x2 ◦ y) .

▶ (J , ◦, (·, ·)): Euclidean Jordan algebra over R if equipped with an associative
inner product (·, ·), i.e. for all x , y , z ∈ J , (x ◦ y , z) = (y , x ◦ z) .

Characterization of Symmetric cones

▶ Any symmetric cone is the cone of squares {x ◦ x : x ∈ J } of some EJA J
[Faraut and Korányi, 1994]



A Simplex-Spectraplex Game (2/2) I

▶ Iteration complexity of OSCMWU: T ≥ 4(lnm+ln d)maxi ∥Ai∥tr,∞
ε iterations.

▶ Prior work:

▶ Smoothing technique [Nesterov, 2007] in O(1/ε) iterations (similar).

▶ Frank-Wolfe method + smoothing [Ying and Li, 2012] in O(1/ε2) iterations but
only O(d2) runtime cost.

▶ Interior point methods: high precision but prohibitive per-iteration cost for
large-scale problems.



A 2nd-Order Cone Min-Max Game: (2/2) I

min
x̄=(1/2,x̃)∈∆Ld+1

+

max
y∈

∏p
i=1 ∆Ld+1

+

{
f (x̄ , y) := ⟨Ã x̄ , y⟩ − ⟨b̄, y⟩

}
, Ã := 2R(0 Ā) .

▶ Iteration complexity of OSCMWU: T ≥ 4(p+1)L ln 2
ε iterations.

▶ Prior work:

▶ Extension of the smoothing technique of Nesterov to EJAs [Baes, 2006].

▶ Interior point method of [Xue and Ye, 1997] requires fewer iterations but much
higher per-iteration cost.



Regret Bounded by Variation in Utilities [Syrgkanis et al., 2015] I

RVU

For (x t) generated by OFTRL with m̃t+1 = mt and a regularizer Φ that is 1-strongly
convex w.r.t. a norm ∥ · ∥, for all T ≥ 1,

∀x ∈ ∆K,

T∑
t=1

f t(x)− f t(x t) ≤ R

η
+ η

T∑
t=1

∥mt −mt−1∥2∗ −
1

4η

T∑
t=1

∥x t − x t−1∥2 ,

where R = supx∈∆K Φ(x)− infx∈∆K Φ(x) , ∥ · ∥∗ is the dual norm and ⟨·, ·⟩ the EJA
inner product.



Online Symmetric-Cone Optimization (OSCO)

Initialization: x1 ∈ ∆K := {x ∈ K : tr(x) = 1}
For t = 1, . . . ,T :

Observe the payoff mt ∈ J
Receive linear payoff ⟨mt , x t⟩
Compute new iterate x t+1 ∈ ∆K
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