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Motivation: Beyond expected returns and risk-sensitive RL

▶ Classical RL: expected utility theory

▶ Limitation: Misalignment with human preferences due to complexities of human
decision making and underlying psychological nuances of perception.

▶ Asymmetric perception of gains and losses

▶ Probability distortions inherent in human cognition,
e.g. tendency to over-estimate rare events and underestimate frequent ones

Focus

Human-centered sequential decision-making models incorporating cognitive and
psychological biases, essential for high-stakes, socially beneficial applications.
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Historical Bit: Behavioral Economics and Prospect Theory

▶ Behavioral Economics: Infusing standard economics analysis with psychological
understanding of how people make decisions.

▶ Daniel Kahneman awarded the Nobel Prize in Economic Sciences in 2002:

‘for having integrated insights from psychological research into economic sci-
ence, especially concerning human judgment and decision-making under un-
certainty.’
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Cumulative Prospect Theoretic RL: Problem Formulation

▶ (a) Ref. point, (b) Utility U : R → R+, (c) Prob. distortion w : [0, 1] → [0, 1]

Cumulative Prospect Theory Value

The CPT value of a real-valued random variable X is

C(X ) =

∫ +∞

0
w+(P(u+(X ) > z))dz −

∫ +∞

0
w−(P(u−(X ) > z))dz ,

CPT Policy Optimization

max
π∈Π

C

[
H−1∑
t=0

rt

]
(CPT-PO)
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Why CPT-RL? Personalized Treatment for Pain Management
Example

Patients and clinicians make sequential decisions influenced by psychological biases.

▶ Reference points: patients pain level
assessment and reporting (psych. bias).

▶ Utility transformation: loss aversion
(patients might perceive pain increase or
withdrawal symptoms as worse than
equivalent gains in pain relief).

▶ Probability distortion: Low probability
events such as severe side effects (e.g.
dependency to medication) over or
underweighted based on patient’s
psychology.
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Prior Work

▶ CPT in stateless static settings: Wide adoption and widespread applications in:

▶ Psychiatry [Sip et al., 2018, George et al., 2019, Mkrtchian et al., 2023]
▶ Chronic diseases treatment [Zhao et al., 2023]
▶ Emergency decision making [Sun et al., 2022]
▶ Energy [Ebrahimigharehbaghi et al., 2022, Dorahaki et al., 2022]
▶ Finance [Luxenberg et al., 2024]

▶ CPT-RL: Understanding and practical impact of CPT-RL remains limited despite:

▶ A few works integrating CPT into RL [L.A. et al., 2016, Borkar and Chandak, 2021,
Ramasubramanian et al., 2021, Danis et al., 2023].

▶ Limited understanding of optimal policies in CPT-RL.

▶ Computational challenges: CPT-SPSA-G algorithm, 0-th order algorithm (scaling
issues, trajectory sampling, does not exploit sequential structure in rewards).
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Our Contributions in a Nutshell

Central Question

How to align the agent’s behavior with the given preferences
by optimizing for CPT return values?

▶ Nature of optimal policies in CPT-RL

▶ Existence of optimal deterministic Markovian policy like in standard MDPs?

▶ What if we remove probability distortions in CPT?

▶ Are there specific utility function classes for which there exist Markovian policies?

▶ Policy Gradient Theorem for CPT-RL

▶ Policy Gradient Algorithm for CPT-RL
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Policy Gradient Theorem for CPT-RL
▶ Continuous utility functions u−, u+

▶ Lipschitz and differentiable weight functions w−,w+

▶ Differentiable policy parametrization θ 7→ πθ(a|h)

PG Theorem for CPT-RL

∀θ ∈ Rd , ∇J(θ) = E

[
φ (R(τ))

H−1∑
t=0

∇θ log πθ(at |ht)

]
,

τ := (st , at , rt)0≤t≤H−1, R(τ) :=
H−1∑
t=0

rt

φ(v) :=

∫ max(v ,0)

z=0
w ′
+(P(u+(R(τ)) > z))dz −

∫ max(−v ,0)

z=0
w ′
−(P(u−(R(τ)) > z))dz
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Policy Gradient Algorithm for CPT-RL
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Application to Trading in Financial Markets

▶ Gym Trading Environment: Bitcoin USD (BTC-USD) market data on 4 years.

▶ States: few extracted features (‘open’, ’high’, ’low’, ’close’) prices and volume.

▶ Rewards: log values of the ratio of the portfolio valuations at times t and t − 1 .
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Conclusion

▶ Main goal: human-centered sequential decision-making models incorporating
cognitive and psychological biases.

▶ Several other applications we explore: electricity energy management, traffic
control on a grid, control on MuJoCo ...

▶ Potential for integration and further implementation impact in practice

Check out our paper for more details!
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