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Problem

min
x
F (x) := E(f(x, ξ)) w.r.t. x ∈ Rd

• f( . , ξ): non-convex differentiable

• ξ: r.v. with unknown distribution

• (ξn : n ≥ 1): iid copies of the r.v. ξ re-
vealed online

The ADAM algorithm [1]
• Very popular in deep learning.
• Adaptive method.
• Less stepsize tuning needed.

Algorithm 1 ADAM (γ, α, β, ε)

1: x0 ∈ Rd,m0 = 0, v0 = 0, γ > 0, ε > 0,
(α, β) ∈ [0, 1)2.

2: for n ≥ 1 do
3: mn = αmn−1 + (1− α)∇f(xn−1, ξn)
4: vn = βvn−1 + (1− β)∇f(xn−1, ξn)2
5: m̂n = mn

1−αn

6: v̂n = vn
1−βn

7: xn = xn−1 − γ m̂n

ε+
√
v̂n

8: end for

ODE method
Constant step γ > 0 : no a.s convergence,
stochastic approximation technique [2].

Figure 1: Piecewise linear interpolated process
from ADAM iterates.

Piecewise linear interpolated process:

zγ(t) := zγn + (zγn+1 − zγn)
(
t− nγ
γ

)
Approximation of a discrete time stochastic
system by a deterministic one (ODE):

Continuous Limit

Algorithm ODE

Discretization
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Continuous-Time System

ż(t) = h(t, z(t)) (ODE)

where h : (0,+∞) × Z+ → Z defined for all
t > 0, all z = (x,m, v) in Z+ by:

h(t, z) =

−
(1−e−at)−1m

ε+
√

(1−e−bt)−1v

a(∇F (x)−m)
b(S(x)− v)



ADAM as a Heavy Ball with Friction (HBF).

c1(t) ẍ(t) + c2(t)ẋ(t) +∇F (x(t)) = 0 ,

Particle mass and viscosity depend on time.
2nd order vs 1st order: faster convergence
(acceleration), reduced oscillations, can go up
and down along the graph of F .

Long run behavior

Theorem
(
zγ

weakly−−−−→
γ→0

z

)
Under mild assumptions, ∀T > 0, ∀δ > 0,

lim
γ↓0

P

(
sup
t∈[0,T ]

‖zγ(t)− z(t)‖ > δ

)
= 0 .

lim
γ↓0

lim sup
n→∞

P
(
d(xγn,∇F−1(0)) > δ

)
= 0 .

ODE Analysis
• Existence, uniqueness and boundedness

of a global ODE solution from (x0, 0, 0).

• Convergence of the solution to the sta-
tionary points of F .

• Key argument: Lyapunov function.

V (t, z) := F (x) +
1

2
‖m‖2U(t,v)−1

Biased vs Unbiased ADAM
Only when unbiased, F (x(t)) ≤ F (x0) .
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Figure 2: ADAM ODE solution vs autonomous ADAM ODE solu-
tion on a 100−dimensional Stochastic Quadratic Problem.

Numerical examples
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Figure 3: Convergence of ADAM and ODE solution
to the optimum for a 2D linear regression.

Explicit Euler discretization scheme for ODEs.
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Figure 4: ADAM: interpolated process and solution
to the ODE for a 2D linear regression.

Setting: 2D linear regression

Y = Xx∗1 + (1−X)x∗2 + ε

where (x∗1, x
∗
2) = (3, 1), X ∼ B(p), p ∈ (0, 1)

ξ = (X,Y )

f( . , ξ) := 1
2

(〈(
X

1−X

)
, ·
〉
− Y

)2

.

Conclusion and future work
1. Introduction of a continuous-time ver-

sion of ADAM (non-autonomous ODE).

2. Existence, uniqueness and boundedness
of the solution.

3. Weak convergence of the interpolated
process to the ODE solution.

4. Convergence in the long run to the sta-
tionary points of the objective function.

Future works:

1. Stability of the ADAM Markov chain.
2. Rate of convergence of ADAM.
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