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Optimization in Deep Learning

Figure 1: Visualization of a loss landscape (VGG-56 on CIFAR-10)
https://www.cs.umd.edu/ tomg/projects/landscapes/

Li et al., Visualizing the Loss Landscape of Neural Nets, NeurIPS 2018
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Problem statement

Problem

min
x

F (x) := E(f (x , ξ)) w.r.t. x ∈ Rd

Assumptions

I f ( . , ξ): nonconvex differentiable function

I (ξn : n ≥ 1): iid copies of r.v ξ revealed online
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Solution ?

Stochastic Gradient Descent (SGD)

xn+1 = xn − γn∇f (xn, ξn+1)

I Limitations
I learning rate choice
I common learning rate for all the coordinates
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Adaptive Algorithms

standard SGD

xn+1,i = xn,i − γn∇f (xn, ξn+1)i

γn := γ ou γn :=
1√
n
, n ≥ 1

Adaptive Algorithms

xn+1,i = xn,i − γn,i gn,i

γn,i := Ψ(∇f (xp, ξp+1)i , p ≤ n)
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ADAM Algorithm
[Kingma and Ba, 2015]

Algorithm 1 ADAM (γ, α, β, ε)

1: x0 ∈ Rd ,m0 = 0, v0 = 0, γ > 0, ε > 0, (α, β) ∈ [0, 1)2.
2: for n ≥ 1 do
3: mn = αmn−1 + (1− α)∇f (xn−1, ξn)
4: vn = βvn−1 + (1− β)∇f (xn−1, ξn)2

5: m̂n = mn
1−αn

6: v̂n = vn
1−βn

7: xn = xn−1 − γ
ε+
√
v̂n
m̂n

8: end for
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Assumptions and asymptotic regime

I Regime : constant step size γ > 0 .

Assumptions on f

I regularity assumptions on f .

I F : x 7→ E(f (x , ξ)) coercive.

I Assumptions on hyperparameters: compatible with practical
implementation.
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From Discrete to Continuous Time

Continous Time : Dynamical System Analysis

Discrete Time : Convergence of ADAM
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The ODE method
[Ljung, 1977, Kushner and Yin, 2003]
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Towards Continuous Time

zγn := zγn−1 + γHγ(n, zγn−1, ξn) ,

For all γ > 0, for all z ,

hγ(n, z) := E(Hγ(n, zγn−1, ξn)|Fn−1)

∆γ
n := Hγ(n, zγn−1, ξn)− hγ(n, zγn−1)

Decomposition in mean field + martingale noise

For γ > 0, zγn = zγn−1 + γhγ(n, zγn−1) + γ∆γ
n ,

zγn − zγn−1
γ

= hγ(n, zγn−1) + ∆γ
n

Fn = σ(ξ1, . . . , ξn)
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From Discrete to Continuous Time

Continous Time : Dynamical System Analysis

Discrete Time : Convergence of ADAM



Continuous Time System
similar approach to [Su et al., 2016]

Non autonomous ODE

Si z(t) = (x(t),m(t), v(t)),

ż(t) = h(t, z(t)) (ODE)

Theorem

Existence, uniqueness and boundedness of a global solution to the
ODE from (x0, 0, 0).
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Mechanical Interpretation - Heavy Ball with Friction
[Attouch et al., 2000, Cabot et al., 2009, Gadat et al., 2018]

I Gravity force (potentiel F ).

I Force of friction of viscous type: −λẋ(t) (damping).

I Reaction of the surface Σ = Graph(F ).

ẍ(t) + γ ẋ(t) +∇F (x(t)) = 0
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ADAM as a Heavy Ball with Friction (HBF)

”Generalized” HBF

c1(t, x(t)) ẍ(t) + c2(t, x(t)) ẋ(t) +∇F (x(t)) = 0 ,

I Generalized HBF :
I Time dependent particle mass
I Time dependent viscosity

I Why HBF ?
I 2nd vs 1st order: acceleration (even if oscillations).
I Escaping local traps (saddle points)
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Convergence to stationary points

Theorem (Convergence)

lim
t→∞

d(x(t),∇F−1({0})) = 0 .

Key argument : Lyapunov function for the ODE

I Definition :

V (t, z) := F (x) +
1

2
‖m‖2U(t,v)−1 .

I Interpretation : mechanical energy of the dynamical system

I Lemma : t 7→ V (t, z(t)) is decreasing on (0,+∞).
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From Discrete to Continuous Time

Continous Time : Dynamical System Analysis

Discrete Time : Convergence of ADAM



Weak convergence of the interpolated process
towards the ODE solution
Techniques [Benäım and Schreiber, 2000]

Moment assumption - Noise control

For every compact set K ⊂ Rd , there exists rK > 0 s.t.

sup
x∈K

E(‖∇f (x , ξ)‖2+rK ) <∞ .

Theorem

Under previous assumptions and the moment assumption,

∀T > 0, ∀δ > 0, lim
γ↓0

P

(
sup

t∈[0,T ]
‖zγ(t)− z(t)‖ > δ

)
= 0 .
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Simulations
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Figure 2: Convergence of ADAM and the ODE solution towards the
optimum for a 2D linear regression
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Long run convergence of the ADAM iterates
Techniques [Fort and Pagès, 1999, Bianchi et al., 2019]

I No a.s convergence : regime n→∞ then γ → 0

Theorem (ergodic convergence of the ADAM iterates)

Let x0 ∈ Rd , γ > 0, (zγn : n ∈ N), zγ0 = (x0, 0, 0). Under the same
assumptions and :

I Stability assumption: supn,γ E‖zγn ‖ <∞ .

Then, for all δ > 0,

lim
γ↓0

lim sup
n→∞

1

n

n∑
k=1

P(d(xγn ,∇F−1({0})) > δ) = 0 . (1)
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Conclusion

Continuous limit

Adam ODE

Discretization

Complementary work:

I Convergence rate of the adam algortihm
(Kurdyka- Lojasiewicz inequality).
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Thank you for your attention

For more details: submitted article, available on arXiv.

AB, P. Bianchi. Convergence and Dynamical Behavior of the
ADAM Algorithm for Non Convex Stochastic Optimization.

and

AB, P. Bianchi. Convergence Analysis of a Momentum Algorithm
with Adaptive Step Size for Nonconvex Optimization



Mean Field

where for all t > 0, all z = (x ,m, v) :

h(t, z) =

−
(1−e−at)−1m

ε+
√

(1−e−bt)−1v

a(∇F (x)−m)
b(S(x)− v)


S : x 7→ E(∇f (x , ξ)2) s.t. ∀x ∈ Rd , S(x) > 0.



Simulations
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Figure 3: adam: interpolated process and solution to the ODE for a 2D
linear regression.

2D linear regression

Y = X x∗1 + (1− X ) x∗2 + ε with (x∗1 , x
∗
2 ) = (3, 1).

ξ = (X ,Y ) with X ∼ B(p), p ∈ (0, 1).

f ( . , ξ) := 1
2

(〈(
X

1− X

)
, ·
〉
− Y

)2

.



Biased vs Unbiased ADAM

With debiasing steps, F (x(t)) ≤ F (x0) .
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Algorithm 2 ADAM (γ, α, β, ε)

1: x0 ∈ Rd ,m0 = 0, v0 = 0, γ > 0, ε >
0, (α, β) ∈ [0, 1)2.

2: for n ≥ 1 do
3: mn = αmn−1+(1−α)∇f (xn−1, ξn)
4: vn = βvn−1 + (1− β)∇f (xn−1, ξn)2

5: m̂n = mn
1−αn

6: v̂n = vn
1−βn

7: xn = xn−1 − γ
ε+
√

v̂n
m̂n

8: end for

Autonomous/Non autonomous ODE solutions for a
100-dimensional Stochastic Quadratic Problem



Literature review
ADAM: Theoretical results



Literature review
ADAM: theoretical results

I O( 1√
T

) average regret bound in nonconvex setting.

I counter-example: average regret does not converge to 0.

I AmsGrad: variant of ADAM

I noiseless version of ADAM (deterministic f ):
I small gradient norm for some upperbounded unknown instant
I specific values of the ADAM hyperparameters

I similar result in the stochastic setting for a general class of
adaptive algorithms
I results stated for AmsGrad and AdaGrad
I generalization to ADAM subject to conditions which are not

easy to verify.
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