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Problem

min
x

F (x) := E(f (x , ξ)) w.r.t. x ∈ Rd

Assumptions

I f ( . , ξ): nonconvex differentiable function
(+ some regularity assumptions to define F , ∇F )

I (ξn : n ≥ 1): iid copies of r.v ξ revealed online
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ADAM Algorithm
[Kingma and Ba, 2015]

I More than 52000 citations !

Algorithm 1 ADAM (γ, α, β, ε)

1: x0 ∈ Rd ,m0 = 0, v0 = 0, γ > 0, ε > 0, (α, β) ∈ [0, 1)2.
2: for n ≥ 1 do
3: mn = αmn−1 + (1− α)∇f (xn−1, ξn)
4: vn = βvn−1 + (1− β)∇f (xn−1, ξn)�2

5: m̂n = mn
1−αn

6: v̂n = vn
1−βn

7: xn = xn−1 − γ
ε+
√

v̂n
m̂n

8: end for
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Set (Hmodel ) of Assumptions

I Model: regularity assumptions on f (non-convex, diff., ...).

I Coercivity : F : x 7→ E(f (x , ξ)) coercive.

I ∀x ∈ Rd , S(x) > 0 where S : x 7→ E(∇f (x , ξ)�2).

I Hyperparameters: verified in practice (’α,β close to 1’).

I Noise: iid sequence (ξn).
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I. From Discrete
to Continuous-Time Adam



The ODE method
[Ljung, 1977, Kushner and Yin, 2003]
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Towards Continuous Time

zγn := zγn−1 + γHγ(n, zγn−1, ξn) ,

For all γ > 0, for all z ,

hγ(n, z) := E(Hγ(n, zγn−1, ξn)|Fn−1)

∆γ
n := Hγ(n, zγn−1, ξn)− hγ(n, zγn−1)

Decomposition in mean field + martingale noise

For γ > 0, zγn = zγn−1 + γhγ(n, zγn−1) + γ∆γ
n ,

zγn − zγn−1

γ
= hγ(n, zγn−1) + ∆γ

n

Fn = σ(ξ1, . . . , ξn)
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II. Continuous-Time Adam



Continuous Time System

Non autonomous ODE

If z(t) = (x(t),m(t), v(t)),

ż(t) = h(t, z(t)) (ODE)

Theorem

Existence, uniqueness and boundedness of a global solution to the
ODE from (x0, 0, 0) under (Hmodel ).
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Convergence to stationary points

Theorem (Convergence)

Under (Hmodel ),

lim
t→∞

d(x(t),∇F−1({0})) = 0 .

Key argument : Lyapunov function for the ODE

V (t, z) := F (x) +
1

2
‖m‖2

U(t,v)−1 .
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III. ADAM with decreasing stepsizes

→ Link between asymptotic behavior of (zn) and ODE ?



In this Talk, ADAM with decreasing stepsizes

Algorithm 2 Adam (((γn, αn, βn) : n ∈ N∗), ε).

1: Initialization: x0 ∈ Rd ,m0 = 0, v0 = 0, r0 = r̄0 = 0.
2: for n = 1 to niter do
3: mn = αnmn−1 + (1− αn)∇f (xn−1, ξn)
4: vn = βnvn−1 + (1− βn)∇f (xn−1, ξn)�2

5: rn = αnrn−1 + (1− αn) −→ rn = 1−
∏n

i=1 αi

6: r̄n = βn r̄n−1 + (1− βn) −→ r̄n = 1−
∏n

i=1 βi

7: m̂n = mn/rn {bias correction step}
8: v̂n = vn/r̄n {bias correction step}
9: xn = xn−1 − γn

ε+
√

v̂n
m̂n .

10: end for

I Define (H′model ) = (Hmodel ) with αn, βn instead of α, β i.e.

1−αn
γn
→ a and 1−βn

γn
→ b.
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ODE method in Stochastic Approximation
[Ljung, 1977, Kushner and Yin, 2003, Duflo, 1997, Benäım, 1999, Borkar, 2008] ...

Robbins Monro scheme

zn+1 = zn + γn+1 g︸︷︷︸
mean field

(zn) + γn+1 ηn+1︸︷︷︸
noise

+γn+1 bn+1︸︷︷︸
bias

,

I Noisy discretization of ż(t) = g(z(t)) .

I Informally:
if γn → 0, noise washes out and ” limn→∞ zn = limt→∞ z(t)”.
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Almost sure convergence

I RM algorithm :
zn+1 = zn + γn+1 h∞︸︷︷︸

mean field

(zn) + γn+1 ηn+1︸︷︷︸
noise

+γn+1 bn+1︸︷︷︸
bias

,

Assumptions (Has−cv )

I
∑

n γn = +∞ and
∑

n γ
2
n < +∞,

I ∀ compact K ⊂ Rd , supx∈K E(‖∇f (x , ξ)‖4) <∞ .

I supn∈N ‖zn‖ < +∞ a.s. (proven separately)

Theorem (Almost Sure Convergence)

Under (H′model ) + (Has−cv ), w.p.1,

lim
n→∞

d(xn,∇F−1({0})) = 0 .
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Towards a Central Limit Theorem

Our algorithm: zn+1 = zn +γn+1h∞(zn) +γn+1bn+1 +γn+1ηn+1 ,

Rescaled algorithm: Zn+1 = zn+1−z∗√
γn+1

; γn = n−κ, κ ∈ (0, 1]

Strongly disturbed algorithm:

Zn+1 = (I + γn+1 H̄︸︷︷︸
1

2γ0
1κ=1I +∇h∞(z∗)

)Zn + γn+1b̄n+1 +
√
γn+1ηn+1
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Assumptions (HCLT )

I Let x∗ ∈ ∇F−1({0}). ∃ neighborhood V of x∗ s.t.

i) F is C2 on V, and ∇2F (x∗) is positive definite.
ii) S is C1 on V.

I ∃κ ∈ (0, 1], γ0 > 0, s.t. γn = γ0/(n + 1)κ. If κ = 1, γ0 >
1

2L .

I ∀ compact K ⊂ Rd , ∃pK > 4, supx∈K E(‖∇f (x , ξ)‖pK ) <∞ .
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Theorem (CLT)

Assume P(zn → z∗) > 0.
Under (H′model ) + (HCLT ), given the event {zn → z∗},

zn − z∗
√
γn

D−−−→
n→∞

N (0,Σ) .

(on R3d ) with a covariance matrix Σ s.t.

(H + ζI3d ) Σ + Σ
(
HT + ζI3d

)
= −Q .

where ζ := 0 if 0 < κ < 1 and ζ := 1
2γ0

if κ = 1.
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Contributions and future work

1. Introduction and analysis of a continuous-time ADAM.

2. Almost sure convergence of ADAM with decreasing stepsizes.

Avoidance of traps?
What about the non-differentiable case?

More on : https://anasbarakat.github.io, on arxiv

and on my pre-recorded talk
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