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Multi-Agent Linear Dynamical Systems

State Evolution

xt+1 = Axt + B1u
1
t + · · ·+ BNu

N
t + wt

▶ xt : global state

▶ (uit)i∈{1,··· ,N}: control inputs

▶ A and (Bi )i∈{1,··· ,N}: transition matrices

▶ wt : adversarial disturbance
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Example 1: Energy Grid Markets

▶ Adversarial disturbances: strategic demand manipulation by large consumers

▶ Costs: local cost (e.g. fuel) + penalty for deviating from target state
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Example 2: Formation Control

▶ Adversarial disturbances: wind gusts, magnetic interference, sensor spoofing

▶ Costs: formation error (maintained distance) and energy consumption
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Example 3: Bioresource management

▶ Adversarial disturbances: misinformation about resource levels, illegal
over-harvesting, policy shocks (e.g. sudden trade bans)

▶ Costs: max revenue while min exploitation cost
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Online Control Setting

Multi-Agent LDS

xt+1 = Axt + B1u
1
t + · · ·+ BNu

N
t + wt

Online Setting

At each time step t, each agent i ∈ {1, · · · ,N}:

▶ observes the state xt ,

▶ selects a control input uit mapping states to controls,

▶ incurs an individual time-varying cost c it(xt , u
i
t)
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Goal and Challenges

Goal

decentralized online control algorithms under adversarial disturbances

▶ Individual (per-agent) guarantees?

▶ Collective (equilibrium) behavior?

▶ Decentralization: Agents act locally without access to others’ policies.

▶ Scaling: Dependence on the number of agents in the system?

▶ Equilibrium behavior: Global equilibrium tracking under identical interest?
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Prior Work and Positioning

Online Learning
(OCO)

Control
(Robust)

Game Theory
(equilibrium computation)
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Related Work

▶ Online non-stochastic control
[Agarwal et al., 2019, Hazan et al., 2020, Foster and Simchowitz, 2020,
Simchowitz et al., 2020, Simchowitz, 2020, Gradu et al., 2020, Ghai et al., 2023,
Cai et al., 2024, Tsiamis et al., 2024, Golowich et al., 2024].

▶ Multi-agent control

▶ Control ∩ game theory [Marden and Shamma, 2018, Chen and Ren, 2019]

▶ linear-quadratic games [Başar and Olsder, 1998, Zhang et al., 2019, Bu et al., 2019,
Zhang et al., 2021, Mazumdar et al., 2020, Hambly et al., 2023] ...

▶ mainly QUADRATIC COSTS + PROBABILISTIC or MINMAX (worst-case)

▶ Online setting

▶ distributed control [Chang and Shahrampour, 2023] ̸= strategic agents + 1 LDS.

▶ online control for population dynamics [Golowich et al., 2024].
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(Single-Agent) Online Control: A Brief Overview

min
u(x)

T∑
t=1

ct(xt , ut)

s.t. xt+1 = Atxt + Btut + wt

xt : state,

ut : control input,

wt : perturbation.
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From Optimal to Online Control

▶ LQR – Gaussian noise & quadratic costs only: ut = Kxt (where K (A,B)).

▶ H∞-control:

min
K1:T

max
∥w1:T ∥2≤C

∑
t

ct(ut , xt)

Pessimistic, computationally ill-behaved for non-quadratics (even convex
costs!), non-adaptive

What is missing?

1. Adaptive performance metric to handle adversarial costs and disturbances.

2. Efficient methods for general losses for which optimal policy is complicated.
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Motivation for Online Control

▶ Flying drone from S to D/ unknown weather

▶ Optimal control: optimistic (stochastic)

▶ Robust control: pessimistic (worst-case)

▶ Online Control: instance-optimal, i.e.,
fast when possible, careful otherwise.
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Online control of LDS

▶ Online setting, t = 1, . . . ,T :

▶ Select input ut ∈ Rn

▶ Observe xt , incur loss: ct(ut , xt)

▶ Performance metric: POLICY REGRET

max
w1:T

(
T∑
t=1

ct(xt , ut)−min
π∈Π

T∑
t=1

ct
(
xπt , u

π
t

))

▶ xπt = counterfactual state under
uπt = π(xπt ), xπt+1 = Axπt + Buπt + wt

▶ Bounded noise: ∥wt∥ ≤W
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What is a reasonable policy comparator class?

▶ For Gaussian LDS with quadratic costs: linear policies are optimal (Riccati)

ΠK = {πK | ut = Kxt}

▶ More general: Disturbance-Action Controllers:

ΠDAC =

{
πM1:H

∣∣∣∣∣ ut =
H∑
i=1

Miwt−i

}
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Single-Agent Online Control Guarantee [Agarwal et al., 2019]

Agarwal, N., Bullins, B., Hazan, E., Kakade, S., Singh, K. Online control with
adversarial disturbances. ICML 2019.

Online Control Regret Guarantee

Efficient algorithm s.t.

T∑
t=1

ct(xt , ut) − min
π∈Π

(
T∑
t=1

ct
(
xπt , u

π
t

))
≤ O(

√
T ) (1)

▶ Efficient → Polynomial in system parameters, logarithmic in T
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Main Argument: Convex Relaxation of ΠK

min
K

T∑
t=1

ct(xt , ut) s.t. xt+1 = Axt + But + wt , ut = Kxt

Unrolling the control law gives:

ut+1(K ) = Kxt+1 =
t∑

i=0

K (A+ BK )iwt−i ⇒ optimization is non-convex in K .

Relaxation (Disturbance-Action parameterization):

ut+1(M) =
H∑
i=0

Mi wt−i , H = O(logT )

Relaxed (convex in M!) problem:

min
M∈M

T∑
t=1

ct
(
xt(M), ut(M)

)
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Gradient Perturbation Controller

Input: memory H, step size η, M = M1, . . . ,MH

Compute a stabilizing linear controller K knowing (A,B)

For t = 1, . . . ,T do

1. Use control ut = Kxt +
∑

i≤H Miwt−i

2. Observe state xt+1, compute noise wt = xt+1 − Axt − But

3. Construct cost function: ℓt(M) = ct
(
xt(M1:H), ut(M1:H)

)
4. Update M̄ : M ← M − η∇Mℓt(M)
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Information Settings: What do agents have access to?

Information Setting 1: Independent Learning

At each time step t, agent i ∈ [N] observes only
the state xt and their own cost.

(no access to control inputs of other agents j ̸= i).

Information Setting 2: Aggregated Control

Information Setting 1
+ aggregated feedback

∑
j ̸=i Bju

j
t .
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Performance Metric: Regret for Online Multi-Agent Control

Regret for agent i

RegTi (Ai , {u−i
t },Πi ) =

T∑
t=0

c it(xt , u
i
t)− min

πi∈Πi

T∑
t=0

c it(x
πi

t , uπ
i

t )

▶ Ai : learning algorithm used by the i ’th agent to select its control uit .

▶ (xπ
i

t , uπ
i

t ): counterfactual state-control pair ({u−i
t } fixed), i.e.,

uπ
i

t = πi (xπ
i

t ), xπ
i

t+1 = Axπ
i

t + Biu
πi

t +
∑

j ̸=i
Bju

j
t + wt .
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Online Gradient Perturbation Controller (Agent i ∈ [N ])

Input: memory H, step size η, initialization M
[0:H−1]
i,1 .

Compute a stabilizing linear controller Ki knowing (A,Bi ).

For t = 1, . . . ,T do

1. Observe state xt .

2. Update under Info. Setting 2.1:
w̃t−1 = xt − Axt−1 − Biu

i
t−1.

uit = Kixt +
∑H

p=1 M
[p]
i,t w̃t−p.

2′. Update under Info. Setting 2.2:
Observe

∑
j ̸=i Bju

j
t−1.

wt−1 = xt − Axt−1 −
∑N

k=1 Bku
k
t−1.

uit = Kixt +
∑H

p=1 M
[p]
i,t wt−p.

3. Record instantaneous cost c it(xt , u
i
t).

4. Construct loss ℓit(Mi ) = c it
(
yKi
t (Mi ), v

i,Ki
t (Mi )

)
.

5. Update Mi,t+1 = ΠMi

[
Mi,t − η∇ℓit(Mi,t)

]
.

end for 19 / 25



Individual Regret Guarantee - Independent Learning

From the viewpoint of a given agent i , (5) can be rewritten:

xt+1 = Axt + Biu
i
t + w̃t , w̃t =

∑
j ̸=i

Bju
j
t + wt .

▶ Agent i executes a DAC policy with disturbance sequence w̃t .

Theorem - Independent Learning

Assumption: each i ∈ [N] knows a strongly stable linear controller Ki for LDS (A,Bi ),

RegTi (Ai , {u−i
t },Πlin

i ) = Õ(N2
√
T )

▶ Lower bound:
√
T is tight.

▶ What about dependence on number of agents N?
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Improved Regret Guarantee - Aggregated Control Learning

▶ Under stronger feedback model ACL,
∑

j ̸=i Bju
j
t accessible.

▶ Agent i executes a DAC policy with disturbance sequence wt .

Theorem - Aggregated Control Learning

Assumption: each i ∈ [N] knows a linear controller Ki s.t. (K1, · · · ,KN)
T is strongly

stable for LDS (A, [B1, · · · ,BN ]) and all other agents use a DAC policy w.r.t. (wt).

RegTi (Ai , {u−i
t },ΠDAC

i ) = Õ(N
√
T ).

▶ Under a stronger Lipschitzness assumption, RegTi = Õ(
√
T ) .

21 / 25



Equilibrium Tracking
Global guarantees when all agents run the same algorithm independently

▶ All cost functions identical (i.e., c it = c jt := ct for any i , j ∈ [N] for every t).

▶ Time-varying game

Equilibrium Tracking Guarantee

1

T

T∑
t=1

(
EQGAP(t)(Mt)

)2
= O

ℓ1(M1)− cinf
T

+
1

T

T∑
t=1

∆ct︸ ︷︷ ︸
cost variability

+
1

T

T∑
t=1

∥wt+1 − wt∥︸ ︷︷ ︸
disturbance variability

 ,

where ∆ct := max∥x∥,∥u∥≤D{ct+1(x , u)− ct(x , u)} for every t.
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Numerical Simulations (Gaussian Disturbance)
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Numerical Simulations (Sinusoidal Disturbance)
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Conclusion and Future Work

▶ Online Multi-Agent Control with Adversarial Disturbances:

Individual regret + global equilibrium guarantees.

Future work:

▶ Unknown dynamics (system identification).

▶ Time-varying dynamics.

▶ Bandit setting, partial observability.

▶ Network of communicating agents with local state observations.
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